SOLVING ABSOLUTE VALUE EQUATION / PENYELESAIAN PERSAMAAN NILAI MUTLAK
Input value of Coefficient of x and constant.
Masukkan nilai koefisien x dan konstanta.
Definition of Absulute Value:
Definisi dari nilai Mutlak:
For Example / Contoh:
Solve each of the following:
Carilah penyelesaian dari:
[a] |x| = 5
[b] |2x - 3| = 7
[c] 2|y + 1| - 4 = 0
Solution / Jawaban:
[a] |x| = 5
(a) x = 5 or x = -5
[b] |2x - 3| = 7
Ssss 2x - 3 = 7
Ssss 2x = 7 + 3
Ssss 2x = 10
Ssss x = 10/2
Ssss x = 5
Ssss or
Ssss 2x - 3 = -7
Ssss 2x = -7 + 3
Ssss 2x = -4
Ssss x = -/2
Ssss x = -2
The solution are x = 5 or x = -2
Penyelesaiannya adalah x = 5 or x = -2
[c] 2|y + 1| - 4 = 0
Sss 2|y + 1| = 4
Sss |y + 1| = 4/2
Sss |y + 1| = 2
Sss y + 1 = 2
Sss y = 2 - 1
Sss y = 1
Sss or
Sss y + 1 = -2
Sss y = -2 - 1
Sss y = -3
The solution are y = 1 or y = -3
Penyelesaiannya adalah y = 1 atau y = -3
Masukkan nilai koefisien x dan konstanta.
Absolute Value Equation Calculator.
Kalkulator Persamaan Nilai Mutlak.
Definition of Absulute Value:
Definisi dari nilai Mutlak:
If |x|= a, for a > 0
Then
x = a or x = -a
Then
x = a or x = -a
For Example / Contoh:
Solve each of the following:
Carilah penyelesaian dari:
[a] |x| = 5
[b] |2x - 3| = 7
[c] 2|y + 1| - 4 = 0
Solution / Jawaban:
[a] |x| = 5
(a) x = 5 or x = -5
[b] |2x - 3| = 7
Ssss 2x - 3 = 7
Ssss 2x = 7 + 3
Ssss 2x = 10
Ssss x = 10/2
Ssss x = 5
Ssss or
Ssss 2x - 3 = -7
Ssss 2x = -7 + 3
Ssss 2x = -4
Ssss x = -/2
Ssss x = -2
The solution are x = 5 or x = -2
Penyelesaiannya adalah x = 5 or x = -2
[c] 2|y + 1| - 4 = 0
Sss 2|y + 1| = 4
Sss |y + 1| = 4/2
Sss |y + 1| = 2
Sss y + 1 = 2
Sss y = 2 - 1
Sss y = 1
Sss or
Sss y + 1 = -2
Sss y = -2 - 1
Sss y = -3
The solution are y = 1 or y = -3
Penyelesaiannya adalah y = 1 atau y = -3
Belum ada Komentar untuk "SOLVING ABSOLUTE VALUE EQUATION / PENYELESAIAN PERSAMAAN NILAI MUTLAK"
Posting Komentar